

Application Note – Calling CST Studio from Matlab

Abstract .. 1
1. Launch CST from Matlab command line ... 2

1.1. Example 1: launch CST, open an existing model, solve, save .. 2
2. Launch and control CST from a Matlab .m file ... 2

2.1. Starting CST DESIGN ENVIRONMENT and opening an MWS window 3
2.2. Translating CST-specific VBA commands into Matlab ... 3
2.3. Useful commands – some examples ... 4
2.4. Example 1 again: launch CST, open an existing model, solve, save 5
2.5. Example 2: Open an MWS file, perform a parameter study, store a result in a Matlab
vector .. 5

Abstract
This application note gives background information on linking CST Studio to Matlab, by
calling CST directly from Matlab.

For information on how to call Matlab from within CST Studio, please see the separate
Application Note CST_USER_NOTE__MATLAB_COM_DDE.pdf .

Methods
There are two main ways to call CST Studio from within Matlab:

1) launch CST from Matlab command line and use a separate VBA file to instruct CST
what operations to do

2) run a Matlab .m file containing CST Studio commands

1. Launch CST from Matlab command line

This is the simplest way to run CST from within Matlab. It is appropriate when the CST
model name and operations to be performed are known in advance and do not need to change.

At the Matlab command line, enter:

>> ! "CST_DS_Path\CST DESIGN ENVIRONMENT.exe" –m cmdfile.bas

where CST_DS_Path is the path to the CST STUDIO SUITE installation directory, and
cmdfile.bas is a Basic (VBA) file containing the commands to be executed within CST
STUDIO SUITE.

1.1. Example 1: launch CST, open an existing model, solve, save
For example, when CST_DS_Path is

ProgramFiles\CSTSTUDIO SUITE 2006
and the command file name (including path) is
 C:\Work\Start_CST.bas

the Matlab command line would look like follows:

>> ! "C:\ProgramFiles\CSTSTUDIO SUITE 2006\CST DESIGN
ENVIRONMENT.exe" –m C:\Work\Start_CST.bas

The contents of the Start_CST.bas file could look as follows:

Sub Main

OpenFile("C:\work\test1.cst”)
Solver.Start
Save

End Sub

This simple VBA script opens the CST model called test1.cst, starts the solver, saves the
model and then exits.

2. Launch and control CST from a Matlab .m file

In this case, all the commands that need to be executed in CST, instead of being contained in
a VBA .bas file are contained in a Matlab .m file. They could as well be entered directly
from the Matlab prompt.
This technique has the advantage that it offers complete control of CST MWS from within
Matlab. Various operations, like solving several models, performing parameter studies,
changing a model, saving or discarding MWS results, etc. are therefore accessible.

The user has access to all CST-specific VBA commands, by means of the Matlab command
invoke.

2.1. Starting CST DESIGN ENVIRONMENT and opening an MWS
window

The first step is typically starting the CST DESIGN ENVIRONMENT. To perform this
operation, the following command syntax is used:

cst = actxserver('CSTStudio.application')

“cst” can be replaced by any other variable name.

To open a new MWS window in CST DS, the following syntax is used:

mws = invoke(cst, 'NewMWS')

where “mws” can be replaced by any other variable name.

To open an existing MWS model, you can (just as if you were working interactively within
CST DS):
- open the model directly into CST DS:

mws = invoke(cst, 'OpenFile', ‘filename.cst');

- or, first open an empty MWS window, then open the model in this window:

mws = invoke(cst, 'NewMWS')
invoke(mws, 'OpenFile', ‘filename.cst');

2.2. Translating CST-specific VBA commands into Matlab

Any set of CST-specific VBA commands can be issued directly from Matlab. For example,
the VBA code for the generation of a brick:

With Brick

.Reset

.Name “Brick1”

.Component “component1”

.Xrange “0”, “1”

.Yrange “0”, “1”

.Zrange “0”, “1”

.Material “Vacuum”

.Create
End With

translates into the following Matlab code:

brick = invoke(mws, 'Brick');
 % create a brick in MWS

invoke(brick, 'Reset');
invoke(brick, 'Name', 'Brick1');
invoke(brick, 'Component', 'component1');
invoke(brick, 'Xrange', '0', '1');
invoke(brick, 'Yrange', '0', '1');
invoke(brick, 'Zrange', '0', '1');
invoke(brick, 'Material', 'Vacuum');
invoke(brick, 'Create');

% ... possibly create other bricks here

release(brick);

Note: if several bricks need to be created, the pair of commands brick = invoke(mws,
'Brick') and release(brick) only need to be issued once.

2.3. Useful commands – some examples

Find out the application name and version

app = invoke(mws, 'GetApplicationName')
ver = invoke(mws, 'GetApplicationVersion')

Set the units

units = invoke(mws,'Units');
invoke(units, 'Geometry','mm');
invoke(units, 'Frequency','ghz');
invoke(units, 'Time','s');

Set the value of a variable

len1=40.00;
invoke(mws, 'StoreParameter','len1',len1);

% “mws” is the Matlab name of the MWS object, see &2.1

Solver commands examples

solver = invoke(mws, 'Solver');
invoke(solver, 'FrequencyRange', fr1, fr2); % Set the
frequency range
invoke(solver, 'Start');

Working with 1D results

result = invoke(mws, 'Result1D', 'a1(1)1(1)'); % Example for
 % S11 linear
numOfValue = invoke(result, 'GetN'); % Might be used to
 % initialize variables

invoke(result, 'Save', 'C:\tmp\filename');
A = importdata('C:\tmp\filename', ' ', 4)
x = A.data(:, 1); % x-data column
y = A.data(:, 2); % y-data column

2.4. Example 1 again: launch CST, open an existing model, solve,
save
To reach the same effect as in the example shown in paragraph 1.1, the following set of
commands need to be entered into the .m file:

cst = actxserver('CSTStudio.application')

mws = invoke(cst, 'NewMWS')
invoke(mws, 'OpenFile', 'C:\work\test1.cst');
solver = invoke(mws, 'Solver');
invoke(solver, 'Start');
invoke(mws, 'Save');

release(solver);
release(mws);
release(cst);

2.5. Example 2: Open an MWS file, perform a parameter study, store
a result in a Matlab vector

The following code can be used to perform this operations. (The code is contained in the
attached file studio3.m. It refers to the CST model tsplitter.cst.)

%matlab-example: tested 09-Jan 2008 with with MATLAB 7.5 (R2007b)
% Open an MWS file, perform a parameter study,
% store a result in a Matlab vector

% To test, first copy the file "tsplitter.cst"
% in the directory "C:\CST_Test"

% Start CST Studio
cst = actxserver('CSTStudio.application')
mws = invoke(cst, 'NewMWS')
app = invoke(mws, 'GetApplicationName')
ver = invoke(mws, 'GetApplicationVersion')

% Open the MWS model
invoke(mws, 'OpenFile', 'C:\CST_Test\tsplitter.cst');

for iii = 1:1:2 % Parameter sweep
 % Set value of parameter
 invoke(mws, 'StoreParameter','offset', iii);

 invoke(mws, 'Rebuild');

 % Start solver
 solver = invoke(mws, 'Solver');
 invoke(solver, 'Start');

 % Take over the result; here, as an example,

% the amplitude (linear) of S11
 result = invoke(mws, 'Result1D', 'a1(1)1(1)');

 numOfValue = invoke(result, 'GetN'); % Might be used to
 % initialize variables

 invoke(result, 'Save', 'C:\tmp\filename');
 A = importdata('C:\tmp\filename', ' ', 4)
 x(:, iii) = A.data(:, 1); % x-data column
 y(:, iii) = A.data(:, 2); % y-data column
end

invoke(mws, 'Save');
invoke(mws, 'Quit');

release(result);
release(solver);
release(mws);
release(cst);

