参考视频

待证函数:

eiθ=cosθ+isinθe^{i\theta} = \cos\theta + i\sin\theta

定义函数:

f(θ)=eiθ(cosθ+isinθ)f(\theta) = e^{i\theta} (\cos\theta + i\sin\theta)

计算导数:

f(θ)=ieiθ(cosθ+isinθ)eiθ(sinθ+icosθ)f'(\theta) = i e^{i\theta} (\cos\theta + i\sin\theta) - e^{i\theta} \left(-\sin\theta + i\cos\theta\right)

简化f(θ)f'(\theta)

=ieiθcosθeiθsinθ+eiθsinθeiθicosθ= i e^{i\theta} \cos\theta - e^{i\theta} \sin\theta + e^{i\theta} \sin\theta - e^{i\theta} i \cos\theta

=0= 0

根据导数为零的性质,可以得出f(θ)f(\theta) 是一个常数:

f(θ)=常数f(\theta) = \text{常数}

计算常数值:

f(0)=ei0(cos0+isin0)=1f(0) = e^{i \cdot 0} \left( \cos 0 + i\sin 0 \right) = 1

f(θ)=1f(\theta) = 1

eiθ(cosθ+isinθ)=1e^{i\theta} (\cos\theta + i\sin\theta) = 1

eiθ=cosθ+isinθe^{i\theta} = \cos\theta + i\sin\theta